Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells
نویسندگان
چکیده
Damage recognition by repair/checkpoint factors is the critical first step of the DNA damage response. DNA double strand breaks (DSBs) activate checkpoint signaling and are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR) pathways. However, in vivo kinetics of the individual factor responses and the mechanism of pathway choice are not well understood. We report cell cycle and time course analyses of checkpoint activation by ataxia-telangiectasia mutated and damage site recruitment of the repair factors in response to laser-induced DSBs. We found that MRN acts as a DNA damage marker, continuously localizing at unrepaired damage sites. Damage recognition by NHEJ factors precedes that of HR factors. HR factor recruitment is not influenced by NHEJ factor assembly and occurs throughout interphase. Damage site retention of NHEJ factors is transient, whereas HR factors persist at unrepaired lesions, revealing unique roles of the two pathways in mammalian cells.
منابع مشابه
Phosphorylation: The Molecular Switch of Double-Strand Break Repair
Repair of double-stranded breaks (DSBs) is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ), homologous recombination (HR), or the inclusive DNA damage response (DDR). These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to reg...
متن کاملPhosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice
Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the ce...
متن کاملPARP regulates nonhomologous end joining through retention of Ku at double-strand breaks
Poly adenosine diphosphate (ADP)-ribosylation (PARylation) by poly ADP-ribose (PAR) polymerases (PARPs) is an early response to DNA double-strand breaks (DSBs). In this paper, we exploit Dictyostelium discoideum to uncover a novel role for PARylation in regulating nonhomologous end joining (NHEJ). PARylation occurred at single-strand breaks, and two PARPs, Adprt1b and Adprt2, were required for ...
متن کاملRad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability.
Nonhomologous end joining (NHEJ) and homologous recombination (HR) represent the two major pathways of DNA double-strand break (DSB) repair in eukaryotic cells. NHEJ repairs DSBs by ligation of cognate broken ends irrespective of homologous flanking sequences, whereas HR repairs DSBs using an undamaged homologous template. Although both NHEJ and HR have been clearly implicated in the maintenanc...
متن کاملGenome Instability and γH2AX
γH2AX has emerged in the last 20 years as a central player in the DDR (DNA damage response), with specificity for DSBs (double-strand breaks). Upon the generation of DSBs, γ-phosphorylation extends along megabase-long domains in chromatin, both sides of the damage. The significance of this mechanism is of great importance; it depicts a biological amplification mechanism where one DSB induces th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 170 شماره
صفحات -
تاریخ انتشار 2005